Shear Stress in Smooth Rectangular Open-Channel Flows
نویسندگان
چکیده
The average bed and sidewall shear stresses in smooth rectangular open-channel flows are determined after solving the continuity and momentum equations. The analysis shows that the shear stresses are function of three components: (1) gravitational; (2) secondary flows; and (3) interfacial shear stress. An analytical solution in terms of series expansion is obtained for the case of constant eddy viscosity without secondary currents. In comparison with laboratory measurements, it slightly overestimates the average bed shear stress measurements but underestimates the average sidewall shear stress by 17% when the width–depth ratio becomes large. A second approximation is formulated after introducing two empirical correction factors. The second approximation agrees very well (R2.0.99 and average relative error less than 6%) with experimental measurements over a wide range of width–depth ratios. DOI: 10.1061/(ASCE)0733-9429(2005)131:1(30) CE Database subject headings: Open channel flow; Boundary shear; Shear stress; Secondary flow; Velocity.
منابع مشابه
Boundary Shear Stress in a Trapezoidal Channel
This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear stress in smooth trapezoidal open channels are derived after using Guo & Julien (2005) early equations taking a part of an investigation to cover both rectangular and trapezoidal chann...
متن کاملPredicting Shear Stress Distribution in Rectangular Channels Using Entropy Concept
This study makes use of the Tsallis entropy to predict the shear stress distribution. Given a definition of the Tsallis entropy, it is maximized by using the probability density function, which then is used to attain a novel shear stress equation. This is then employed for calculating the shear stress distribution in rectangular channels in different aspect ratios and finally, for viability, th...
متن کاملShape Effects and Definition of Hydraulic Radius in Manning 's Equation in Open Channel Flow
In the Manning equation the hydraulic radius can be defined as the cross-section dimension of the shape. In pipe flow the bed shear stress is assumed to be uniformly distributed along the wetted perimeter which cannot be true in open channel flow. Hence, three approximation of the true boundary shear-stress distribution are examined and more practical conveyance depth or resistance radius formu...
متن کاملResistance to Flow in a V-Shaped Bottom Channel
Water flow in open channels is always subject to the resistance to flow and energy dissipation. For design purposes, one of the needed variables is the hydraulic resistance coefficient. For this mean, the influence of cross-sectional shape together with secondary flow cells and lateral distribution of true boundary shear stress have not yet been fully explored. This paper surveys the number of ...
متن کاملSecondary flows over artificial bed strips
Characteristics of open channel flows can be significantly modified in the presence of secondary flows. In this study, cellular secondary flows were artificially generated with alternate rough and smooth bed strips, which were aligned longitudinally in an open channel. Flow measurements were conducted with a two-dimensional Laser Doppler Anemometer system. Experimental results show that the dis...
متن کامل